NATIONAL UNIVERSITY OF SINGAPORE School of Computing PH.D DEFENCE - PUBLIC SEMINAR Title: Using Meta-Data from Free-Text User-Generated Content to Improve Personalized Recommendation by Reducing Sparsity Speaker: Mr
نویسنده
چکیده
Recommender Systems (RS) have become increasingly essential in many domains for alleviating the "information overload" problem, but existing recommendation techniques suffer from the sparsity problem due to insufficient input data. In this thesis, we aim at extracting and incorporating meta-data from free-text UserGenerated Content (UGC) to lessen the effects of sparsity and therefore improve the quality of recommendation. We achieve this goal by conducting three different studies, each of which proposes a recommendation solution that incorporates UGC from different perspectives, and addresses specific problems introduced by data sparsity in different contexts. In particular, in study one, we show that adjective features embedded in user reviews are useful for characterizing movie features as well as user tastes. We extend the standard TFIDF term weighting scheme by introducing Cluster Frequency (CLF) to automatically extract high quality adjective features from user reviews, and incorporate the extracted adjective features into a specific recommendation technique, i.e. Singular Value Decomposition (SVD) to show effectiveness. In study two, we show that critic reviews of the items can be used to boost new item recommendation. We collect critic review articles for corresponding items in recommender system, and employ topic model to quantify the textual content. We adapt Non-negative Matrix Factorization (NMF) to incorporate the topics inferred from the critic reviews for recommendation, aiming at addressing the new item recommendation problem. Study three focuses on extracting functional aspects from user reviews for mobile app recommendation. With the extracted functional aspects, we are able to analyze user requirements at the functional level. We propose a graph-based ranking algorithm to predict new functionalities for users, and devise a competition mechanism to filter redundant recommendations. Our proposed solution is effective in improving stability against data sparsity and increasing the accuracy and diversity of mobile app recommendation. Powered by TCPDF (www.tcpdf.org)
منابع مشابه
NATIONAL UNIVERSITY OF SINGAPORE School of Computing PH.D DEFENCE - PUBLIC SEMINAR Title: Personalizing Recommendation in E-Commerce and Micro-blog Social Networks
E-commerce and microblogs have emerged as two important applications of Web 2.0 technology. Service providers rely heavily on personalized recommender systems to drive sales and social interaction respectively. This thesis seeks to address the challenges of data sparsity and scalability in recommender systems, and proposes methods to improve the performance of personalized recommendation in e-c...
متن کاملNATIONAL UNIVERSITY OF SINGAPORE School of Computing PH.D DEFENCE - PUBLIC SEMINAR
Mobile apps have become commonplace in society. But with millions of apps flooding the app stores, recommender systems have become indispensable tools as they help consumers overcome the problem of information overload. By sifting through the ocean of apps, they allow consumers to discover new and compelling apps through personalized recommendations. Yet, conventional recommender systems have t...
متن کاملNATIONAL UNIVERSITY OF SINGAPORE School of Computing PH.D DEFENCE - PUBLIC SEMINAR
Automatic Speech Recognition (ASR) has been one of the most popular research areas in computer science. Many state-of-the-art ASR systems still use the Hidden Markov Model (HMM) for acoustic modelling due to its efficient training and decoding. HMM state output probability of an observation is assumed to be independent of the other states and the surrounding observations. Since temporal correla...
متن کاملA Novel Trust Computation Method Based on User Ratings to Improve the Recommendation
Today, the trust has turned into one of the most beneficial solutions to improve recommender systems, especially in the collaborative filtering method. However, trust statements suffer from a number of shortcomings, including the trust statements sparsity, users' inability to express explicit trust for other users in most of the existing applications, etc. Thus to overcome these problems, this ...
متن کاملNATIONAL UNIVERSITY OF SINGAPORE School of Computing PH.D DEFENCE - PUBLIC SEMINAR
In the last decade, we have seen significant improvement in the ease and cost of capturing multimedia content. However, the aesthetic quality of the content captured by an amateur user still needs substantial improvement. Camera devices have intelligent features, such as automatic focus, face detection, etc., to assist users in taking better photos, however, it remains a challenge for an amateu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015